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INTRODUCTION

The term land use and land cover (LULC) 
change encompasses all human-induced modifica-
tions to the Earth’s surface. While human altera-
tions to land for sustenance have occurred over 
millennia, the current rates, extents, and intensities 
of LULC changes surpass historical levels, lead-
ing to unprecedented impacts on ecosystems and 
environmental processes at local, regional, and 
global scales. Systemic variations in population 
growth, economic development, and physical fac-
tors such as topography, slope condition, soil type, 
and climatic conditions collectively influence 
LULC changes. Remote sensing (RS) techniques 
offer a cost-effective and accurate means of ana-
lyzing LULC changes, particularly beneficial for 
scientists in less developed nations utilizing open-
source data to enhance their proficiency in RS and 

GIS techniques. Two notable considerations arise: 
firstly, LULC changes occur rapidly, especially 
in irrigated areas not covered by ground surveys; 
secondly, ground surveys are often prohibitively 
expensive. The current landscape necessitates ad-
vancements in methods for efficiently collecting 
and analyzing extensive LULC data over larger 
areas in shorter timeframes.

The primary objective is to assess the nature, 
significance, and pace of land area changes from 
1990 to 2020, shedding light on the historical state 
of land cover to comprehend the dynamics and 
patterns of change. The primary drivers of change 
are population increase and urbanization, influ-
encing not only demographic shifts but also so-
cio-economic, environmental, and cultural dimen-
sions. Limited land and soil resources face altera-
tions due to population growth and evolving needs 
for agriculture, urban development, and industry. 
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Recognizing the intricacies and rates of LULC 
dynamics is crucial for effective resource manage-
ment, planning, and regulation, especially since 
dynamics are closely linked to the overuse of nat-
ural resources and influenced by climate change, 
soil conditions, and topographical features.

Understanding the drivers and dynamics of 
LULC changes is pivotal for formulating sus-
tainable strategies and informed planning deci-
sions. Land change models, whether dynamic or 
static, spatial or non-spatial, deductive or induc-
tive, pattern-based or agent-based, serve as valu-
able tools for environmental studies on LULC 
change. These models, calibrated and validated 
for projecting future changes, employ strategies 
like MLPNN-CA-MC within the TerrSet model, 
effectively simulating various forms of land cover 
based on physical and socio-economic data.

This study aimed to evaluate the pattern of 
LULC change in the Malaprabha Right Bank 
Command (MRBC) area and predict changes for 
the year 2030. Utilizing remote sensing data with 
Arc GIS software, LULC changes have been ex-
plored, and predictions were made using the cel-
lular automata (CA) Markov chain model embed-
ded in TerrSet software.

STUDY AREA

The Malaprabha River, a significant tributary 
of the Krishna River, encompasses a catchment 

area of 2564 km2, and is regulated by the Mala-
prabha Dam, also known as Naviluteertha Dam 
or Renuka Sagara Dam, situated in Saundatti 
Taluka of Belgaum District, Karnataka (refer to 
Figure 1). The dam, one of the shortest in the 
region, forms a catchment that provides irriga-
tion through canals on both banks, covering an 
expanse of 196,132 ha in Belgaum, Bagalkot, 
Gadag, and Dharwad Districts. The river eventu-
ally joins the Krishna River at Kudala Sangam in 
Bagalkot district. With an average annual rainfall 
of approximately 766 mm, the Malaprabha basin 
experiences climatic conditions ranging from hu-
mid to semi-humid.

The basin caters to the drinking water needs of 
three million people across three districts and ma-
jor cities like Hubli and Dharwad. However, the 
basin faces challenges, such as reduced flow due to 
developmental activities in the catchment area and 
declining rainfall over time. This decrease in flow 
has led to a shortage of water supply for irriga-
tion, particularly at the tail end of the canals. The 
dependable flow at 75 percent capacity is recorded 
at 1,857 MCM. The right bank canal, stretching 
over 142 km, covers a total area of 1231 km2 in the 
MRBC area. The waterlogging and salinity issues 
are prevalent in this command area, attributed to 
the presence of heavy black cotton soils and insuf-
ficient natural sub-surface drainage facilities. The 
topography of the irrigable command area under 
MRBC is generally flat, with a ground slope rang-
ing from 1 in 50 to 1 in 200. About 80% of the 

Figure 1. Location of the map of the study area
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command area is covered by deep black cotton 
soils, and approximately 40% of the command 
area is characterized by saline alkali soil, locally 
known as KARL. This soil type results from ex-
treme arid conditions, with low rainfall preventing 
the leaching of soluble salts.

The proportion of area allocated to Kharif and 
Rabi crops varies annually and by location, but 
on average, it is about 15 to 25% for Kharif crops 
and 75 to 85% for Rabi crops. The commonly cul-
tivated crops in the MRBC area include Jowar, 
pulses, wheat, safflower, cotton, among others.

Data acquisition and data analysis

In this study, the primary data sources included 
a digital elevation model as well as satellite imag-
ery from Landsat-5, Landsat-7, and Landsat-8, ob-
tained through the USGS Earth Explorer. All imag-
ery underwent geometric registration to align with 
the Universal Transverse Mercator (UTM43N) co-
ordinate system. The land use and land cover infor-
mation was derived from Landsat satellite imagery 
with a spatial resolution of 30×30 m, spanning the 
years 1990 to 2020. Additionally, Landsat satellite 
imagery was employed for detailed observations 
and classification of LULC changes throughout the 
study period (Figure 2).

Preprocessing of satellite image

Several image pre-processing operations, in-
cluding atmospheric, geometric, and radiometric 
correction, have been conducted. Radiometric 
correction is a crucial step in the processing of 
satellite images, involving the conversion of digi-
tal numbers to radiance (or reflectance) values. 
This correction becomes imperative when work-
ing with measurements from multiple sensing 
platforms, such as the combination of Landsat-5, 
7, and 8. Reflective band digital numbers (DNs) 
are transformed into top of atmosphere (TOA) re-
flectance by applying rescaling coefficients found 
in the metadata (MTL) file. The conversion is car-
ried out using the formula provided below.
	 𝜌𝜌λ′ = 𝑀𝑀𝜌𝜌𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝜌𝜌 

 
𝜌𝜌λ′  
 
𝑀𝑀𝜌𝜌 
 
𝐴𝐴𝜌𝜌  
 

𝜌𝜌λ = 𝜌𝜌λ′
𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

 
 
Kappa coefficient (T) =(𝑇𝑇𝑇𝑇∗𝑇𝑇𝑇𝑇𝑇𝑇)−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑇𝑇𝑇𝑇 2−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  
 
 
 

𝑃𝑃𝑃𝑃𝑃𝑃 = [
𝑃𝑃11 𝑃𝑃12 … 𝑃𝑃1𝑛𝑛
𝑃𝑃21 𝑃𝑃22 … 𝑃𝑃2𝑛𝑛

… … … …
𝑃𝑃𝑃𝑃1 𝑃𝑃𝑃𝑃2 … 𝑃𝑃𝑃𝑃𝑃𝑃

] 

 
 
 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃 = 1 𝑛𝑛

𝑗𝑗=1      ( 
 

	 (1)
where:	

𝜌𝜌λ′ = 𝑀𝑀𝜌𝜌𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝜌𝜌 
 
𝜌𝜌λ′  
 
𝑀𝑀𝜌𝜌 
 
𝐴𝐴𝜌𝜌  
 

𝜌𝜌λ = 𝜌𝜌λ′
𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

 
 
Kappa coefficient (T) =(𝑇𝑇𝑇𝑇∗𝑇𝑇𝑇𝑇𝑇𝑇)−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑇𝑇𝑇𝑇 2−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  
 
 
 

𝑃𝑃𝑃𝑃𝑃𝑃 = [
𝑃𝑃11 𝑃𝑃12 … 𝑃𝑃1𝑛𝑛
𝑃𝑃21 𝑃𝑃22 … 𝑃𝑃2𝑛𝑛

… … … …
𝑃𝑃𝑃𝑃1 𝑃𝑃𝑃𝑃2 … 𝑃𝑃𝑃𝑃𝑃𝑃

] 

 
 
 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃 = 1 𝑛𝑛

𝑗𝑗=1      ( 
 

 – TOA planetary reflectance, 

𝜌𝜌λ′ = 𝑀𝑀𝜌𝜌𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝜌𝜌 
 
𝜌𝜌λ′  
 
𝑀𝑀𝜌𝜌 
 
𝐴𝐴𝜌𝜌  
 

𝜌𝜌λ = 𝜌𝜌λ′
𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

 
 
Kappa coefficient (T) =(𝑇𝑇𝑇𝑇∗𝑇𝑇𝑇𝑇𝑇𝑇)−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑇𝑇𝑇𝑇 2−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  
 
 
 

𝑃𝑃𝑃𝑃𝑃𝑃 = [
𝑃𝑃11 𝑃𝑃12 … 𝑃𝑃1𝑛𝑛
𝑃𝑃21 𝑃𝑃22 … 𝑃𝑃2𝑛𝑛

… … … …
𝑃𝑃𝑃𝑃1 𝑃𝑃𝑃𝑃2 … 𝑃𝑃𝑃𝑃𝑃𝑃

] 

 
 
 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃 = 1 𝑛𝑛

𝑗𝑗=1      ( 
 

 – 
band-specific multiplicative rescaling 
factor, 

𝜌𝜌λ′ = 𝑀𝑀𝜌𝜌𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝜌𝜌 
 
𝜌𝜌λ′  
 
𝑀𝑀𝜌𝜌 
 
𝐴𝐴𝜌𝜌  
 

𝜌𝜌λ = 𝜌𝜌λ′
𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

 
 
Kappa coefficient (T) =(𝑇𝑇𝑇𝑇∗𝑇𝑇𝑇𝑇𝑇𝑇)−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑇𝑇𝑇𝑇 2−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  
 
 
 

𝑃𝑃𝑃𝑃𝑃𝑃 = [
𝑃𝑃11 𝑃𝑃12 … 𝑃𝑃1𝑛𝑛
𝑃𝑃21 𝑃𝑃22 … 𝑃𝑃2𝑛𝑛

… … … …
𝑃𝑃𝑃𝑃1 𝑃𝑃𝑃𝑃2 … 𝑃𝑃𝑃𝑃𝑃𝑃

] 

 
 
 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃 = 1 𝑛𝑛

𝑗𝑗=1      ( 
 

 – band-specific additive rescal-
ing factor, Qcal – quantized and calibrated 
standard product pixel values (DN).

TOA reflectance with a correction for the sun 
angle is then:

	

𝜌𝜌λ′ = 𝑀𝑀𝜌𝜌𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝜌𝜌 
 
𝜌𝜌λ′  
 
𝑀𝑀𝜌𝜌 
 
𝐴𝐴𝜌𝜌  
 

𝜌𝜌λ = 𝜌𝜌λ′
𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

 
 
Kappa coefficient (T) =(𝑇𝑇𝑇𝑇∗𝑇𝑇𝑇𝑇𝑇𝑇)−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑇𝑇𝑇𝑇 2−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  
 
 
 

𝑃𝑃𝑃𝑃𝑃𝑃 = [
𝑃𝑃11 𝑃𝑃12 … 𝑃𝑃1𝑛𝑛
𝑃𝑃21 𝑃𝑃22 … 𝑃𝑃2𝑛𝑛

… … … …
𝑃𝑃𝑃𝑃1 𝑃𝑃𝑃𝑃2 … 𝑃𝑃𝑃𝑃𝑃𝑃

] 

 
 
 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃 = 1 𝑛𝑛

𝑗𝑗=1      ( 
 

	 (2)

Radiometric correction is applied to the each 
band in order to avoid the accumulation of errors 
while classifying the satellite images.

Figure 2. Wokflow process for predicting the LULC maps using CA-Markov chain model
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Classification

After establishing a classification scheme, 
the implementation of maximum likelihood 
classification, renowned as one of the most 
widely used image classification techniques, 
was employed to generate maps encompassing 
various land use and land cover classes, utilizing 
training data. Subsequently, a field review was 
conducted to validate and verify uncertain areas. 
This ground check was facilitated with the as-
sistance of GPS technology and local maps, as 
detailed by Mishra et al. (2020).

Land use/ land cover change detection

The importance of change identification lies in 
discerning transitions between different land-use 
classes. Commonly employed techniques for land 
change detection encompass image overlay, clas-
sification comparisons involving land cover met-
rics, change vector analysis, principal component 
analysis, image differencing, and the ratio of stan-
dardized difference vegetation index. In this study, 
the classification comparisons based on land cover 
metrics were utilized. The analysis focused on the 
specific regions of interest, scrutinizing each land 
cover type across different time periods.

Accuracy assessment

Accuracy assessment is conducted by com-
paring the generated map with reference data. 

This involves scrutinizing the relationship be-
tween ground truth and the outcomes of auto-
mated categorization through the use of error ma-
trices. The error matrix provides various charac-
teristics of classification performance, including 
errors of commission (inclusion) and omission 
(exclusion). These matrices are square, with the 
total number of columns and rows equal to the 
number of classes being assessed for accuracy.

Additionally, the Kappa coefficient is em-
ployed for precision evaluation. This coefficient 
serves as an indicator of the difference between 
the actual agreement achieved by an automated 
classifier and the reference data, as opposed to 
the chance agreement between a random classi-
fier and the reference data. Kappa coefficient is 
calculated as:

	

𝜌𝜌λ′ = 𝑀𝑀𝜌𝜌𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝜌𝜌 
 
𝜌𝜌λ′  
 
𝑀𝑀𝜌𝜌 
 
𝐴𝐴𝜌𝜌  
 

𝜌𝜌λ = 𝜌𝜌λ′
𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

 
 
Kappa coefficient (T) =(𝑇𝑇𝑇𝑇∗𝑇𝑇𝑇𝑇𝑇𝑇)−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑇𝑇𝑇𝑇 2−∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  
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where:	TS – total samples, TCS – total corrected 
samples.

Validation and prediction of LULC maps

To project future developments in the com-
mand area, the study analyzed the trend variations 
of Land Use and Land Cover (LULC) changes 
for the years 1990, 2000, 2010, and 2020. The 
TerrSet model was employed to simulate future 
changes over time, utilizing the CA-MC stochas-
tic modeling technique. Leveraging the transition 
probability matrix (TPM), the model predicts the 

Table 1. Accuracy assessment of classified LULC map for 1990
Parameter Urban Barren land Water body Agriculture Total (user)

Urban 12 0 0 0 12

Barren land 0 11 0 1 12

Water body 1 1 11 0 13

Agriculture 0 0 0 14 14

Total (producer) 13 12 11 15 51

OA = 94.11 %, K = 0.921

Table 2. Accuracy assessment of classified LULC map for 2000
Parameter Urban Barren land Water body Agriculture Total (user)

Urban 14 1 0 0 15

Barren land 1 11 0 0 12

Water body 0 0 11 0 11

Agriculture 0 1 0 12 13

Total (producer) 15 13 11 12 51

OA = 94.11 %, K = 0.921
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spatial organization of different LULC categories 
and scenarios (Li et al., 2015; Wang et al., 2012). 
The Markov matrix model utilizes the Bayes 
equation, comparing the initial (T1) and subse-
quent (T2) land cover states, to forecast LULC 
changes (Eastman et al., 2016). This approach al-
lows for the anticipation of future LULC dynam-
ics based on the observed patterns of change in 
the earlier years.
	 S(t+1) = Pij* S(t)	 (4)
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,(i, j = 1, 
2,…, n). The cellular automata model can 
be expressed by the following equation: 

	 S(t,t+1) = f[S(t),N]	 (6)

where:	 S(t) and S(t+1) are the system status at times 
t and t + 1, respectively, N – cellular field, t 
and t+1 are the different times, f – transfor-
mation rule of cellular states in local space, 
S – the set of limited and discrete cellular 
states, Pij—the transition probability matrix 
in a state (Leta M K et al., 2021).

The CA-Markov model proves to be a potent 
approach for simulating spatiotemporal dynam-
ics by utilizing the transition probability matri-
ces derived from the comparison of two distinct 

images. In contrast to the Markov chain model, 
where future changes primarily rely on the spa-
tial condition of neighboring cells, the CA model 
introduces spatial and dynamic cycles. This inte-
gration of CA and Markov techniques is deemed 
adept at simulating and predicting land use and 
land cover changes. The resulting matrix captures 
the count of pixels undergoing changes in land 
use categories (Risma et al., 2019).

To project the 2030 LULC map, the 2020 
LULC maps for the region were employed in 
simulating future LULC maps. As outlined by 
Araya and Cabral (2010) and Keshtkar and Voigt 
(2015), the models demonstrating accuracies 
exceeding 80% are considered highly reliable 
predictive tools. These findings affirm the CA-
Markov model’s credibility and effectiveness in 
forecasting LULC changes.

RESULTS AND DISCUSSION

The study findings initially deal with the clas-
sification of LULC with their accuracy assess-
ment and the results of a change detection evalu-
ation followed by the prediction of LULC maps.

Accuracy evaluation of the classified images

In this study, the performance of maximum 
likelihood classification (MLC) was evaluated 

Table 3. Accuracy assessment of classified LULC map for 2010
Parameter Urban Barren land Water body Agriculture Total (user)

Urban 12 0 0 0 12

Barren land 0 13 0 2 15

Water body 2 0 9 0 11

Agriculture 0 0 0 13 13

Total (producer) 14 13 9 15 51

OA = 90.19 %, K = 0.895

Table 4. Accuracy assessment of classified LULC map for 2020
Parameter Urban Barren land Water body Agriculture Total (user)

Urban 12 0 0 2 14

Barren land 0 13 0 0 13

Water body 0 0 13 0 13

Agriculture 0 1 0 10 11

Total (producer) 12 14 13 12 51

OA = 94.12 %, K = 0.922
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using key metrics, including overall accuracy, 
producer’s accuracy, user’s accuracy, and the 
Kappa statistic. For a quantitative assessment of 
classification accuracy, a random sample of 100 
– plus points was selected. The overall accuracy 
rates for the land use and land cover maps in 1990, 
2000, 2010, and 2020 are reported as 94.11%, 
94.11%, 90.19%, and 94.12%, respectively, with 
a confidence level of 95%. Correspondingly, the 
Kappa statistics for the same years are 0.921, 
0.921, 0.895, and 0.922.

According to Landis and Koch (1977), a 
Kappa statistic between 0.61 and 0.80 indicates 
substantial strength of agreement, while a range 
of 0.81 to 1.0 suggests almost perfect accuracy 
strength of assessment. In the present study, the 
calculated overall classification accuracy assess-
ment falls within the almost perfect category, giv-
en the Kappa values ranging from 0.895 to 0.922.

Absolutely, it is a standard practice in the 
studies utilizing historical land use and land cover 
derived from remote sensing Landsat data to per-
form an accuracy assessment. As highlighted by 
Sitthi et al. (2016), this assessment involves the 
creation of a transition matrix that compares the 
classified map with a reference classification map. 
This matrix serves as a valuable tool in quantify-
ing and evaluating the accuracy of LULC maps, 

providing insights into the reliability and preci-
sion of the classification process.

LULC change analysis

Land use categorization for the years 1990, 
2000, 2010 and 2020 in the satellite images was 
conducted through the application of the MLC tech-
nique. The total land use area covers approximately 
1231 km², constituting the cultivable command area 
on the right bank canal of Malaprabha. This area is 
further classified into four broad classes: water, agri-
culture, urban area, and Barren land. The outcomes 
are summarized in Table 5, revealing a discernible 
trend. The results indicate a consistent increase in the 
Urban and Barren land classes and a corresponding 
decrease in the agriculture class from 1990 to 2020. 

The data presented in Table 5 clearly shows 
that agriculture is the predominant LULC type 
in the Malaprabha Right Bank Command, cov-
ering over 75% of the area consistently across 
all the years. The alterations in LULC have im-
pacted the distribution of agricultural areas for 
the foreseeable future. The notable rise in barren 
land and urban areas has directly led to a reduc-
tion in agricultural land. The study’s findings in-
dicate that if adequate mitigations are not imple-
mented, the same trend is expected to persist in 
the coming years.

Table 5. Comparison of LULC classes of 1990, 2000, 2010 and 2020 on basis of area wise in km2

No. Classes 1990 2000 2010 2020

1 Urban 138.55 138.80 217.79 254.67

2 Barren land 37.85 44.89 45.12 56.94

3 Water body 1.22 1.18 1.33 3.44

4 Agriculture 1053.40 1046.15 966.78 915.98

Total 1231.02 1231.02 1231.02 1231.02

Figure 3. LULC map of MRBC for 1990 and 2000
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Figure 4. LULC map of MBRC for 2010 and 2020

Figure 5. Predicted LULC map of MRBC for 2020

Figure 6. Predicted LULC map of MRBC for 2030
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Transition probability matrix

This section discusses the transitions of land 
use and land cover areas between three classified 
images utilized in the study, presented in Table 
6. The columns represent the LULC in 1990, and 
the rows indicate the LULC in 2000. Notable 
changes are observed in the 2000–2010 period, 
with a substantial conversion of agricultural ar-
eas into urban zones, amounting to nearly 80 
km² in that decade alone. Similarly, from 2010 
to 2020, there is a reduction in agricultural areas 
accompanied by an increase in urban and bar-
ren land. The potential reason for the shift from 
agricultural to barren and urban areas could be 
the limited availability of water sources for agri-
cultural activities in the Malaprabha Right Bank 
Command area. The observed changes suggest 
a possible continuation of this trend in future 
years, an aspect that could be explored further 
through LULC prediction.

Validation of LULC between projected 
and classified land use

The international scientific community has 
extensively explored land cover change re-
search, employing models that forecast future 
spatial patterns of change (Turner II et al., 1995; 
Lambin, 1997). Various modelers address this 
demand in different ways (Wilkie and Finn, 
1988; Baker, 1989; Lambin 1997; Hall et al., 

1995; Veldkamp and Fresco, 1996b; Geoghegan 
et al., 1997; Mertens and Lambin, 1997; Liver-
man et al., 1998), often integrating these models 
with raster-based Geographic Information Sys-
tems (GIS). Given the importance of assessing 
model accuracy in making predictions, scien-
tists employ statistical methods to validate these 
models (Pontius, 2002).

The current study validates the projected 
future change map against the map of recent 
land cover change (2020) to establish the accu-
racy of the projected results obtained from the 
Markov process. The LULC for 2020 is pro-
jected using classified maps from 1990, 2000, 
and 2010, derived from Landsat satellite im-
ages. The methods for validating anticipated 
LULC, developed by Pontius et al. (2004) at 
Clark University in the United States, involve 
measuring the amount and location of land cat-
egories for prediction spanning decades at dif-
ferent resolutions. The comparison map, gener-
ated from the Markov model simulation results, 
is evaluated against a reference map represent-
ing reality (LULC map derived from Landsat 
image of 2020). The anticipated 2020 image is 
created using data from previous projections, 
and its accuracy is validated against the classi-
fied Land use of the actual 2020 year. To further 
validate the predicted map, it is overlaid with 
explanatory variables (e.g., distance from road, 
slope, and elevation maps, as shown in Figures 
9, 10 and 11), utilizing the infrastructure class 

Table 6. Transition matrix of LULC during years 1990–2000 (km2)

Year
1990

Total
Classes Water Agriculture Barren Land Urban

2000

Water 0.47 0.56 0.00 0.15 1.18

Agriculture 0.43 949.58 10.12 86.02 1046.15

Barren Land 0.00 20.70 19.89 4.30 44.89

Urban 0.32 82.56 7.84 48.08 138.80

Total 1.22 1053.40 37.85 138.55 1231.02

Table 7. Transition Matrix of LULC during years 2000–2010 (km2)

Year
2000

Total
Classes Water Agriculture Barren Land Urban

2010

Water 0.67 0.5 0.01 0.15 1.33

Agriculture 0.37 867.52 8.55 90.34 966.78

Barren Land 0.00 15.73 25.18 4.21 45.12

Urban 0.14 162.4 11.15 44.10 217.79

Total 1.18 1046.15 44.89 138.80 1231.02
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change tool under the IDRISI Selva environ-
ment. This additional step is taken to enhance 
the validation results for the 2020 Land use us-
ing the Markov Chain model.

The validation process, utilizing the Mar-
kov chain model as outlined in Table 10, in-
volved a comparison between the model output 
for 2020 and the classified Land use of the same 
year. The examination revealed a minor dispar-
ity between the model and classified 2020 im-
ages, with barren land exhibiting the highest 
variation at + 5.44%. Error values between the 
classified LANDSAT image and the predicted 
TerrSet image (2020) were found to be 0.51% 
for agriculture, 2.87% for water bodies, and 
-3.07% for urban areas. Overall, the compari-
son of land use images indicated a variation 
of less than 5%, suggesting the Markov chain 
model produced a reasonably accurate predic-
tion for the 2020 Land use. Consequently, the 
model has been employed to forecast land use 
and cover for the year 2030.

Prediction of 2030 land use and land 
cover image

Table 11 presents the Markov Chain model’s 
forecast of future land use changes for the year 
2030, while Table 12 displays area statistics for 
the years 1990, 2000, 2010, 2020, and the pro-
jected figures for 2030. Notably, there is a con-
sistent reduction in agriculture area from 1990 to 
2030, decreasing from 1053.40 km² in 1990 to 
895.78 km² in 2030. This decline is anticipated 
in each decade, potentially influenced by urban 

Table 8. Transition matrix of LULC during years 2010–2020 (km2)

Year
2010

Total
Classes Water Agriculture Barren Land Urban

2020

Water 0.94 2.15 0.01 0.33 3.43

Agriculture 0.15 782.02 14.35 119.46 915.98

Barren land 0.02 25.56 21.98 9.38 56.94

Urban 0.22 157.05 8.78 88.62 254.67

Total 1.33 966.78 45.12 217.79 1231.02

Table 9. Transition matrix of LULC during years 1990–2020 (km2)

Year
1990

Total
Classes Water Agriculture Barren Land Urban

2020

Water 0.79 2.18 0.03 0.43 3.43

Agriculture 0.27 847.90 13.04 54.77 915.98

Barren land 0.03 27.67 19.7 9.54 56.94

Urban 0.13 175.65 5.08 73.81 254.67

Total 1.22 1053.4 37.85 138.55 1231.02

Table 10. Comparison of classified and modeled LULC of 2020 in km2

No. Class Colour Classified 2020 
value

Predicted 2020 
value Error (km2) Error (%)

1 Agriculture Green 915.98 911.34 4.64 0.51

2 Urban Red 254.67 262.50 -7.83 -3.07

3 Barren land Yellow 56.94 53.84 3.10 5.44

4 Water body Blue 3.44 3.34 0.10 2.87

Table 11. Area statistics of predicted LULC classes of 
2030

Class
Years 2030

Area (km2) Area (%)

Agriculture 901.70 73.25

Urban 273.06 22.18

Barren land 53.10 4.31

Water body 3.16 0.26
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expansion and a portion being transformed into 
barren land downstream.

Urban areas exhibit a rising trend from 1990 
to 2030, driven by urbanization, settlement, 
and development, growing from 138.55 km² to 
275.48 km², representing a percentage increase 
of approximately 11.13%. The percentage of wa-
ter bodies is expected to remain constant in the 
predicted map, showing a gradual increase from 
2020, stabilizing at 0.28%.

While the percentage of barren land in-
creased from 3.07% in 1990 to 4.63% in 2020, 
it is projected to remain consistent at 4.57% in 
the next decade, covering an area of 56.32 km². 
The study suggests that the Markov chain model 
predicts a continued decrease in agriculture area, 
accompanied by an expansion of settlement and 
barren land. This trend is attributed, in part, to 
the inadequate availability of water at the canal’s 
downstream, impacting its application for end-
users. Notably, agriculture exhibits the highest 

likelihood of change, with a 67.08% probability 
of remaining in agriculture in 2030, while urban 
to urban transition remains stable at 5.35%. Con-
versely, the probabilities for water body and bar-
ren land transitioning to other classes are notably 
low. Specifically, the agriculture class demon-
strates a considerable likelihood of transitioning 
to urban settlement (16.41%), with urban tran-
sitioning to agriculture at approximately 5.05%. 
Noteworthy changes include shifts from agri-
culture to barren land, urban to barren land, and 
barren land to agriculture, all indicating less than 
a 2% change in area. Consequently, the future 
outlook suggests a higher probability of change 
from agriculture to urban in 2030.

CONCLUSIONS

The primary objective of this study was 
to comprehend the evolution of historical and 

Table 12. Statistics of LULC area of 1990, 2000, 2010, 2020 and 2030

Years/Class
1990 2000 2010 2020 2030

Area 
(km2) Area (%) Area 

(km2) Area (%) Area 
(km2) Area (%) Area 

(km2)
Area 
(%)

Area 
(km2) Area (%)

Agriculture 1053.4 85.57 1046.15 84.98 966.78 78.53 915.98 74.41 901.70 73.25

Urban 138.55 11.25 138.80 11.27 217.79 17.69 254.67 20.69 273.06 22.18

Barren land 37.85 3.07 44.89 3.65 45.12 3.67 56.94 4.63 53.10 4.31

Water body 1.22 0.10 1.18 0.10 1.33 0.11 3.44 0.28 3.16 0.26

Table 13. Probability of changing LULC from 1990 to 2030 in area (km2)

Year
2030

1990
Total

Classes Water Agriculture Barren Land Urban

2030

Water 0.71 1.95 0.02 0.48 3.16

Agriculture 0.35 825.76 13.41 62.18 901.7

Barren Land 0.02 23.69 19.36 10.03 53.1

Urban 0.14 202 5.06 65.86 273.06

Total 1.22 1053.4 37.85 138.55 1231.02

Table 14. Probability of changing LULC from 1990 to 2030 in percentage

Year
1990

Total (%)
Classes Water Agriculture Barren Land Urban

2030

Water 0.06 0.16 0.00 0.04 0.26

Agriculture 0.03 67.08 1.09 5.05 73.25

Barren land 0.00 1.92 1.57 0.81 4.3

Urban 0.01 16.41 0.41 5.35 22.18

Total 0.1 85.57 3.07 11.25 100%
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projected land use and land cover patterns in the 
Malaprabha Canal’s command area from 1990 
to 2030. The classification results highlight a 
gradual increase in settlement and a concur-
rent decrease in agriculture from 1990 to 2020. 
The rate of change in these classes over each 
decade from 1990 to 2000 exhibits minimal 
fluctuations. However, a substantial shift occurs 
from 2000 to 2010, marked by a sharp decline 
in agriculture and a notable increase in urban 
settlement. This period coincides with signifi-
cant urban development, likely contributing to 
the observed changes.

From 1990 to 2020, there is a consistent up-
ward trend in barren land, a trend projected to 
continue into 2030 according to the CA-Markov 
model. This suggests a water scarcity issue, par-
ticularly at the canal’s tail end, leading to a de-
cline in agriculture and an expansion of barren 
and settlement areas. The land use classification 
by MLC demonstrates robust performance, with 
an overall Kappa statistic of a minimum of 0.895 
and an overall classification accuracy exceeding 
93.13%. The Markov model’s predictions are 
further validated by the 2020 classified map gen-
erated by MLC.

The Markov model’s forecasts indicate an 
escalating trend in settlement rates and a dimin-
ishing agricultural land area. The diminishing 
agricultural land may disrupt ecological balance 
in the future, while a growing population and 
expanding barren land underscore the increasing 
demand for food and water resources. The study 
predictions for the future land use and land cover 
of this developing region are crucial for develop-
ing informed management policies, especially 
concerning water resource allocation from the se-
lected canal region.
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